Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.09.03.22279558

ABSTRACT

Background: T cells are important in preventing severe disease from SARS-CoV-2, but scalable and field-adaptable alternatives to expert T cell assays are needed. The interferon-gamma release assay QuantiFERON platform was developed to detect T cell responses to SARS-CoV-2 from whole blood with relatively basic equipment and flexibility of processing timelines. Methods: 48 participants with different infection and vaccination backgrounds were recruited. Whole blood samples were analysed using the QuantiFERON SARS-CoV-2 assay in parallel with the well-established Protective Immunity from T Cells in Healthcare workers (PITCH) ELISpot, which can evaluate spike-specific T cell responses. Aims: The primary aims of this cross-sectional observational cohort study were to establish if the QuantiFERON SARS-Co-V-2 assay could discern differences between specified groups and to assess the sensitivity of the assay compared to the PITCH ELISpot. Findings: The QuantiFERON SARS-CoV-2 distinguished acutely infected individuals (12-21 days post positive PCR) from naive individuals (p< 0.0001) with 100% sensitivity and specificity for SARS-CoV-2 T cells, whilst the PITCH ELISpot had reduced sensitivity (62.5%) for the acute infection group. Sensitivity with QuantiFERON for previous infection was 12.5% (172-444 days post positive test) and was inferior to the PITCH ELISpot (75%). Although the QuantiFERON assay could discern differences between unvaccinated and vaccinated individuals (55-166 days since second vaccination), the latter also had reduced sensitivity (55.5%) compared to the PITCH ELISpot (66.6%). Conclusion: The QuantiFERON SARS-CoV-2 assay showed potential as a T cell evaluation tool soon after SARS-CoV-2 infection but has lower sensitivity for use in reliable evaluation of vaccination or more distant infection.


Subject(s)
COVID-19 , Acute Disease
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.05.21.492554

ABSTRACT

The Omicron lineage of SARS-CoV-2, first described in November 2021, spread rapidly to become globally dominant and has split into a number of sub-lineages. BA.1 dominated the initial wave but has been replaced by BA.2 in many countries. Recent sequencing from South Africa's Gauteng region uncovered two new sub-lineages, BA.4 and BA.5 which are taking over locally, driving a new wave. BA.4 and BA.5 contain identical spike sequences and, although closely related to BA.2, contain further mutations in the receptor binding domain of spike. Here, we study the neutralization of BA.4/5 using a range of vaccine and naturally immune serum and panels of monoclonal antibodies. BA.4/5 shows reduced neutralization by serum from triple AstraZeneca or Pfizer vaccinated individuals compared to BA.1 and BA.2. Furthermore, using serum from BA.1 vaccine breakthrough infections there are likewise, significant reductions in the neutralization of BA.4/5, raising the possibility of repeat Omicron infections.

3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.05.22270447

ABSTRACT

Background: T cell responses to SARS-CoV-2 following infection and vaccination are less characterised than antibody responses, due to a more complex experimental pathway. Methods: We measured T cell responses in 108 healthcare workers (HCWs) in an observational cohort study, using the commercialised Oxford Immunotec T-SPOT Discovery SARS-CoV-2 assay (OI T-SPOT) and the PITCH ELISpot protocol established for academic research settings. Results: Both assays detected T cell responses to SARS-CoV-2 spike, membrane and nucleocapsid proteins. Responses were significantly lower when reported by OI T-SPOT than by PITCH ELISpot. Four weeks after two doses of either Pfizer/BioNTech BNT162b or ChAdOx1 nCoV-19 AZD1222 vaccine, the responder rate was 63% for OI T-SPOT Panels1+2 (peptides representing SARS-CoV-2 spike protein excluding regions present in seasonal coronaviruses), 69% for OI T-SPOT Panel 14 (peptides representing the entire SARS-CoV-2 spike), and 94% for the PITCH ELISpot assay. The two OI T-SPOT panels correlated strongly with each other showing that either readout quantifies spike-specific T cell responses, although the correlation between the OI T-SPOT panels and the PITCH ELISpot was moderate. Conclusion: The standardisation, relative scalability and longer interval between blood acquisition and processing are advantages of the commercial OI T-SPOT assay. However, the OI T-SPOT assay measures T cell responses at a significantly lower magnitude compared to the PITCH ELISpot assay, detecting T cell responses in a lower proportion of vaccinees. This has implications for the reporting of low-level T cell responses that may be observed in patient populations and for the assessment of T cell durability after vaccination.

4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.26.21265497

ABSTRACT

In March 2020, the Rare and Imported Pathogens Laboratory at Public Health England, Porton Down, was tasked by the Department of Health and Social Care with setting up a national surveillance laboratory facility to study SARS-CoV-2 antibody responses and population-level sero-surveillance in response to the growing SARS-CoV-2 outbreak. In the following 12 months, the laboratory tested more than 160,000 samples, facilitating a wide range of research and informing PHE, DHSC and UK government policy. Here we describe the implementation and use of the Euroimmun anti-SARS-CoV-2 IgG assay and provide an extended evaluation of its performance. We present a markedly improved sensitivity of 91.39% ([≥]14 days 92.74%, [≥]21 days 93.59%) compared to our small-scale early study, and a specificity of 98.56%. In addition, we detail extended characteristics of the Euroimmun assay: intra- and inter-assay precision, correlation to neutralisation and assay linearity.


Subject(s)
COVID-19
8.
- The COvid-19 Multi-omics Blood ATlas (COMBAT) Consortium; David J Ahern; Zhichao Ai; Mark Ainsworth; Chris Allan; Alice Allcock; Azim Ansari; Carolina V Arancibia-Carcamo; Dominik Aschenbrenner; Moustafa Attar; J. Kenneth Baillie; Eleanor Barnes; Rachael Bashford-Rogers; Archana Bashyal; Sally Beer; Georgina Berridge; Amy Beveridge; Sagida Bibi; Tihana Bicanic; Luke Blackwell; Paul Bowness; Andrew Brent; Andrew Brown; John Broxholme; David Buck; Katie L Burnham; Helen Byrne; Susana Camara; Ivan Candido Ferreira; Philip Charles; Wentao Chen; Yi-Ling Chen; Amanda Chong; Elizabeth Clutterbuck; Mark Coles; Christopher P Conlon; Richard Cornall; Adam P Cribbs; Fabiola Curion; Emma E Davenport; Neil Davidson; Simon Davis; Calliope Dendrou; Julie Dequaire; Lea Dib; James Docker; Christina Dold; Tao Dong; Damien Downes; Alexander Drakesmith; Susanna J Dunachie; David A Duncan; Chris Eijsbouts; Robert Esnouf; Alexis Espinosa; Rachel Etherington; Benjamin Fairfax; Rory Fairhead; Hai Fang; Shayan Fassih; Sally Felle; Maria Fernandez Mendoza; Ricardo Ferreira; Roman Fischer; Thomas Foord; Aden Forrow; John Frater; Anastasia Fries; Veronica Gallardo Sanchez; Lucy Garner; Clementine Geeves; Dominique Georgiou; Leila Godfrey; Tanya Golubchik; Maria Gomez Vazquez; Angie Green; Hong Harper; Heather A Harrington; Raphael Heilig; Svenja Hester; Jennifer Hill; Charles Hinds; Clare Hird; Ling-Pei Ho; Renee Hoekzema; Benjamin Hollis; Jim Hughes; Paula Hutton; Matthew Jackson; Ashwin Jainarayanan; Anna James-Bott; Kathrin Jansen; Katie Jeffery; Elizabeth Jones; Luke Jostins; Georgina Kerr; David Kim; Paul Klenerman; Julian C Knight; Vinod Kumar; Piyush Kumar Sharma; Prathiba Kurupati; Andrew Kwok; Angela Lee; Aline Linder; Teresa Lockett; Lorne Lonie; Maria Lopopolo; Martyna Lukoseviciute; Jian Luo; Spyridoula Marinou; Brian Marsden; Jose Martinez; Philippa Matthews; Michalina Mazurczyk; Simon McGowan; Stuart McKechnie; Adam Mead; Alexander J Mentzer; Yuxin Mi; Claudia Monaco; Ruddy Montadon; Giorgio Napolitani; Isar Nassiri; Alex Novak; Darragh O'Brien; Daniel O'Connor; Denise O'Donnell; Graham Ogg; Lauren Overend; Inhye Park; Ian Pavord; Yanchun Peng; Frank Penkava; Mariana Pereira Pinho; Elena Perez; Andrew J Pollard; Fiona Powrie; Bethan Psaila; T. Phuong Quan; Emmanouela Repapi; Santiago Revale; Laura Silva-Reyes; Jean-Baptiste Richard; Charlotte Rich-Griffin; Thomas Ritter; Christine S Rollier; Matthew Rowland; Fabian Ruehle; Mariolina Salio; Stephen N Sansom; Alberto Santos Delgado; Tatjana Sauka-Spengler; Ron Schwessinger; Giuseppe Scozzafava; Gavin Screaton; Anna Seigal; Malcolm G Semple; Martin Sergeant; Christina Simoglou Karali; David Sims; Donal Skelly; Hubert Slawinski; Alberto Sobrinodiaz; Nikolaos Sousos; Lizzie Stafford; Lisa Stockdale; Marie Strickland; Otto Sumray; Bo Sun; Chelsea Taylor; Stephen Taylor; Adan Taylor; Supat Thongjuea; Hannah Thraves; John A Todd; Adriana Tomic; Orion Tong; Amy Trebes; Dominik Trzupek; Felicia A Tucci; Lance Turtle; Irina Udalova; Holm Uhlig; Erinke van Grinsven; Iolanda Vendrell; Marije Verheul; Alexandru Voda; Guanlin Wang; Lihui Wang; Dapeng Wang; Peter Watkinson; Robert Watson; Michael Weinberger; Justin Whalley; Lorna Witty; Katherine Wray; Luzheng Xue; Hing Yuen Yeung; Zixi Yin; Rebecca K Young; Jonathan Youngs; Ping Zhang; Yasemin-Xiomara Zurke.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.11.21256877

ABSTRACT

Treatment of severe COVID-19 is currently limited by clinical heterogeneity and incomplete understanding of potentially druggable immune mediators of disease. To advance this, we present a comprehensive multi-omic blood atlas in patients with varying COVID-19 severity and compare with influenza, sepsis and healthy volunteers. We identify immune signatures and correlates of host response. Hallmarks of disease severity revealed cells, their inflammatory mediators and networks as potential therapeutic targets, including progenitor cells and specific myeloid and lymphocyte subsets, features of the immune repertoire, acute phase response, metabolism and coagulation. Persisting immune activation involving AP-1/p38MAPK was a specific feature of COVID-19. The plasma proteome enabled sub-phenotyping into patient clusters, predictive of severity and outcome. Tensor and matrix decomposition of the overall dataset revealed feature groupings linked with disease severity and specificity. Our systems-based integrative approach and blood atlas will inform future drug development, clinical trial design and personalised medicine approaches for COVID-19.


Subject(s)
COVID-19 , Sepsis
9.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.04.21256571

ABSTRACT

It is unclear whether prior endemic coronavirus infections affect COVID-19 severity. Here, we show that in cases of fatal COVID-19, antibody responses to the SARS-COV-2 spike are directed against epitopes shared with endemic beta-coronaviruses in the S2 subunit of the SARS-CoV-2 spike protein. This immune response is associated with the compromised production of a de novo SARS-CoV-2 spike response among individuals with fatal COVID-19 outcomes.


Subject(s)
COVID-19
11.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.12.435194

ABSTRACT

Terminating the SARS-CoV-2 pandemic relies upon pan-global vaccination. Current vaccines elicit neutralizing antibody responses to the virus spike derived from early isolates. However, new strains have emerged with multiple mutations: P.1 from Brazil, B.1.351 from South Africa and B.1.1.7 from the UK (12, 10 and 9 changes in the spike respectively). All have mutations in the ACE2 binding site with P.1 and B.1.351 having a virtually identical triplet: E484K, K417N/T and N501Y, which we show confer similar increased affinity for ACE2. We show that, surprisingly, P.1 is significantly less resistant to naturally acquired or vaccine induced antibody responses than B.1.351 suggesting that changes outside the RBD impact neutralisation. Monoclonal antibody 222 neutralises all three variants despite interacting with two of the ACE2 binding site mutations, we explain this through structural analysis and use the 222 light chain to largely restore neutralization potency to a major class of public antibodies.

12.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.09.426034

ABSTRACT

Double stranded RNA is generated during viral replication. The synthetic analogue poly I:C is frequently used to mimic anti-viral innate immune responses in models of psychiatric and neurodegenerative disorders including schizophrenia, autism, Parkinson’s disease and Alzheimer’s disease. Many studies perform limited analysis of innate immunity despite these responses potentially differing as a function of dsRNA molecular weight and age. Therefore fundamental questions relevant to impacts of systemic viral infection on brain function and integrity remain. Here, we studied innate immune-inducing properties of poly I:C preparations of different lengths and responses in adult and aged mice. High molecular weight (HMW) poly I:C (1-6kb, 12 mg/kg) produced more robust sickness behavior and more robust IL-6, IFN-I and TNFα responses than poly I:C of <500 bases (low MW) preparations. This was partly overcome with higher doses of LMW (up to 80 mg/kg), but neither circulating IFNβ nor brain transcription of Irf7 were significantly induced by LMW poly I:C, despite brain Ifnb transcription, suggesting that brain IFN-dependent gene expression is predominantly triggered by circulating IFNβ binding of IFNAR1. In aged animals, poly I:C induced exaggerated IL-6, IL-1β and IFN-I in the plasma and similar exaggerated brain cytokine responses. This was associated with acute working memory deficits selectively in aged mice. Thus, we demonstrate dsRNA length-, IFNAR1- and age-dependent effects on anti-viral inflammation and cognitive function. The data have implications for CNS symptoms of acute systemic viral infection such as those with SARS-CoV-2 and for models of maternal immune activation.


Subject(s)
Memory Disorders , Schizophrenia , Alzheimer Disease , Autistic Disorder , Tooth, Impacted , Eye Infections, Viral , Neurodegenerative Diseases
13.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.06.24.20135038

ABSTRACT

Background Personal protective equipment (PPE) and social distancing are key measures designed to mitigate the risk of occupational SARS-CoV-2 infection in hospitals. Why healthcare workers nevertheless remain at increased risk is uncertain. Methods We conducted voluntary Covid-19 testing programmes for symptomatic and asymptomatic staff at a large UK teaching hospital using nasopharyngeal PCR testing and immunoassays for IgG antibodies. A positive result by either modality was used as a composite outcome. Risk factors for Covid-19 were investigated using multivariable logistic regression. Results 1083/9809(11.0%) staff had evidence of Covid-19 at some time and provided data on potential risk-factors. Staff with a confirmed household contact were at greatest risk (adjusted odds ratio [aOR] 4.63 [95%CI 3.30-6.50]). Higher rates of Covid-19 were seen in staff working in Covid-19-facing areas (21.2% vs. 8.2% elsewhere) (aOR 2.49 [2.00-3.12]). Controlling for Covid-19-facing status, risks were heterogenous across the hospital, with higher rates in acute medicine (1.50 [1.05-2.15]) and sporadic outbreaks in areas with few or no Covid-19 patients. Covid-19 intensive care unit (ICU) staff were relatively protected (0.46 [0.29-0.72]). Positive results were more likely in Black (1.61 [1.20-2.16]) and Asian (1.58 [1.34-1.86]) staff, independent of role or working location, and in porters and cleaners (1.93 [1.25-2.97]). Contact tracing around asymptomatic staff did not lead to enhanced case identification. 24% of staff/patients remained PCR-positive at [≥]6 weeks post-diagnosis. Conclusions Increased Covid-19 risk was seen in acute medicine, among Black and Asian staff, and porters and cleaners. A bundle of PPE-related interventions protected staff in high-risk ICU areas.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL